Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.07.14.22276948

Résumé

SARS-CoV-2 vaccines have proven effective in eliciting an immune response capable of providing protective immunity in healthy individuals. However, whether SARS-CoV-2 vaccination induces a long-lived immune response in immunocompromised individuals is poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common immunodeficiency disorders in adults and are characterized by an impaired ability to mount robust antibody responses following infection or vaccination. Here, we present data from a prospective study in which we analyzed the B and T cell response in PAD patients following SARS-COV-2 vaccination. Unexpectedly, individuals with PAD syndromes mounted a SARS-CoV-2 specific B and CD4+ T cell response that was comparable in magnitude to healthy individuals. Many individuals with PAD syndromes displayed reduced IgG1+ and CD11c+ memory B cell responses following the primary vaccination series. However, the IgG1 class-switching defect was largely rescued following mRNA booster vaccination. Boosting also elicited an increase in the SARS-CoV-2-specific B and T cell response and the development of Omicron-specific memory B cells in COVID-19-naive PAD patients. Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in PAD patients that may contribute to long-term protective immunity.


Sujets)
Déficits immunitaires , COVID-19
2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.01.26.22269848

Résumé

Patients with primary antibody deficiency syndromes (PAD) have poor humoral immune responses requiring immunoglobulin replacement therapy. We followed PAD patients after SARS-CoV-2 vaccination by evaluating their immunoglobulin replacement products and serum for anti-spike binding, Fc{gamma}R binding, and neutralizing activities. Immunoglobulin replacement products had low anti-spike and receptor binding domain (RBD) titers and neutralizing activity. In COVID-19-naive PAD patients, anti-spike and RBD titers increased after mRNA vaccination but decreased to pre-immunization levels by 90 days. Patients vaccinated after SARS-CoV-2 infection developed higher responses comparable to healthy donors. Most vaccinated PAD patients had serum neutralizing antibody titers above an estimated correlate of protection against ancestral SARS-CoV-2 and Delta virus but not against Omicron virus, although this was improved by boosting. Thus, currently used immunoglobulin replacement products likely have limited protective activity, and immunization and boosting of PAD patients with mRNA vaccines should confer at least short-term immunity against SARS-CoV-2 variants, including Omicron.


Sujets)
Déficits immunitaires , COVID-19
3.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.07.16.205088

Résumé

The Coronavirus Disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of systemic and mucosal IgA and T cell responses, completely prevents SARS-CoV-2 infection in the upper and lower respiratory tracts, and likely confers sterilizing immunity in most animals. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission, and curtailing pandemic spread.


Sujets)
Maladies pulmonaires , Syndrome respiratoire aigu sévère , COVID-19 , Inflammation
SÉLECTION CITATIONS
Détails de la recherche